class DefaultMultimodalEmbedding[source]
DefaultMultimodalEmbedding(*args, **kwargs) ::Model
Model groups layers into an object with training and inference features.
Arguments:
inputs: The input(s) of the model: a keras.Input object or list of
keras.Input objects.
outputs: The output(s) of the model. See Functional API example below.
name: String, the name of the model.
There are two ways to instantiate a Model:
1 - With the "Functional API", where you start from Input,
you chain layer calls to specify the model's forward pass,
and finally you create your model from inputs and outputs:
import tensorflow as tf
inputs = tf.keras.Input(shape=(3,))
x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs)
outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
2 - By subclassing the Model class: in that case, you should define your
layers in __init__ and you should implement the model's forward pass
in call.
import tensorflow as tf
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)
def call(self, inputs):
x = self.dense1(inputs)
return self.dense2(x)
model = MyModel()
If you subclass Model, you can optionally have
a training argument (boolean) in call, which you can use to specify
a different behavior in training and inference:
import tensorflow as tf
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)
self.dropout = tf.keras.layers.Dropout(0.5)
def call(self, inputs, training=False):
x = self.dense1(inputs)
if training:
x = self.dropout(x, training=training)
return self.dense2(x)
model = MyModel()
Once the model is created, you can config the model with losses and metrics
with model.compile(), train the model with model.fit(), or use the model
to do prediction with model.predict().
class DuplicateAugMultimodalEmbedding[source]
DuplicateAugMultimodalEmbedding(*args, **kwargs) ::DefaultMultimodalEmbedding
This is majorly for SimCSE and also is a show case of how to implement in-batch data augmentation